All posts by Ryan

likes lasers, geometric design, typography, and video games

120: Fluorescent Samurai FightStick

Somehow for all the plans I’ve had over the years to laser engrave a fight stick, I never actually got around to it until this week! Last week, a coworker at the library was planning on making a custom artwork label for his arcade fight stick in the library’s makerspace, and it didn’t take long discussing materials and fabrication processes (including just printing on paper to replace the stock Ryu artwork) before I practically demanded to laser engrave the hardware myself. Since I kind of stole his project from him in order to complete one of my own, I hope there’s enough juicy details herein to cover the process! Thanks, Mark!

The stock acrylic has a lip almost certainly CNC milled. These aren’t easy to recreate with a laser!

We briefly discussed engraving the acrylic panel that is included with the controller, but we decided against that so that he’d always have an unaltered panel handy. Besides, we were already talking about using a fluorescent orange acrylic that we’ve used in the library before for making bright, eye-catching tokens and trinkets. It’s a fiery equivalent to the green acrylic I use for Ingress badges; edges practically glow with this material! But the material we chose was only available in 1/8″—about 50% thicker than the stock acrylic—so I’d have to do some measurements to make sure it’d still fit. There were a few other tricky issues to figure out as well, so I knew I had some prototyping to do. But first, the design itself!

The layout is about 13″ by 8″, features eight buttons and zero button labels. Pro!

Mark had already done some of the hard work and whipped up a layout of the artwork he wanted to engrave. It was only roughly the size of the fight stick’s acrylic cover. Featuring an illustration of a kneeling samurai and seven bushido virtues, he told me he’d always been enamored with samurai and the code they lived by.

“How that warrior code and Buddhist philosophy can coexist interests me.  … I think anyone who is interested in an applicable ethic for living, who understands that the world can be violent, but hopes not to have to actually be violent, will find plenty to study in the samurai.”

The layout didn’t have accurate measurements or the button and joystick layout, though, so I’d have to see if someone put one together online. As it turns out, we didn’t need to rely on the community; late product manufacturer Mad Catz provides a PSD template for users who want to print out their own art. Its pixels are no good for laser cutting, but it has the exact dimensions and throwing together some vector circles where the PSD says they should be was quick and easy.

The chipboard prototype fit perfectly, and looks pretty snazzy on its own!

Once I had the layout prepared, I ran several prototypes. The first was cut out of cardboard, which was slightly too thick to be used easily in place of the acrylic, but it did help me discover that I accidentally nudged the bottom row of buttons out of alignment when creating the vector template. I corrected those issues and cut out a second full size prototype in chipboard. The chipboard fit perfectly and even looked pretty good under the stock acrylic!

Several small material setting prototypes. Please ignore the Triforce!

I had to run several small engraving tests on the actual material because of a few techniques I planned to use that need really precise settings. First, I’d need to recreate a lip on the entire outside rim of the acrylic; I’d have to engrave very deeply in order to do so. I also wanted to make sure I created a nice depth effect on the engraving, so I’d need to combine the halftone raster engraving on the greyscale samurai art with selective vector engraving on the darkest strokes. Finally, because of the thicker material we’re using, I wanted to round the edges so they wouldn’t stick out quite as much around the buttons. This involves pulling the laser out of focus, so I’d have to make sure the depth offset was an appropriate amount.

Detail of the letter engraving, including the deep vector stroke outlining the glyph above.

During this prototyping, I figured out that I’d need to engrave at 100% power, 10% speed to burn away enough material to recreate the stock acrylic’s outer lip. That’s ridiculously slow, and across an entire 13″ by 8″ design it would have taken over three hours to engrave, so I ended up breaking the engraving into four jobs. By doing so, I prevented the laser from passing by the entire inner area of the acrylic, reducing the engraving time to about 35 minutes. What a relief!

This acrylic really shows off fingerprints, doesn’t it?

I also determined that pulling the laser out of focus by exactly 1″ creates a nice rounded effect while being a nice easy number to remember. I used the same settings that would cut through the material with the proper focus. The slight misalignment of my #2 mirror struck again and required me to move the out-of-focus vector lines just a tiny fraction to the left to compensate. One of these days I’ll get that fixed.

My final acrylic lip was close enough, and check out that smooth rounded corner on top!

After I engraved the lip and cut out the button holes, I flipped the material, removed the back face’s protective mask, and got to engraving the art! It might not be obvious at first, but if you’re going to engrave something you’ll be resting your hands on often, you should engrave the back face and leave the top smooth and untouched. Otherwise the engraving might irritate your skin and you’re going to have to clean your filth out of the artwork more often than anyone should have to deal with. Besides, the fluorescence of the material is best shown off through the material; back face engravings capture much more of the color and appear less frosty.

Samurai on metal plate. Great shadow effect, but with plenty of distracting screws.

Amusingly enough, it didn’t dawn on me until I installed the fight stick that I’d need to make some kind of thin black background layer so that the metal button plate wouldn’t be visible through the design. It’s kind of a neat look, but it detracts from the theme, so I used the only material I had on hand (some black/silver LaserLights; don’t tell Jen!) and cut the template out of that. It fit just fine beneath the acrylic, so it was time for put Mark’s fighting game weapon of choice back together for good.

One small detail: the acrylic’s rounded corners needed to be about 0.1″ radius, quite a bit rounder than I first estimated.

The final piece was simple to install thanks to the hinged design of the FightStick-branded fight stick (that’s not confusing at all, right?). I was a little worried that the originally-pencil samurai design would suffer from being printed “in reverse” (i.e. light lines on a dark background), but the way the deeper vector engraving works with the light halftone raster engraving almost makes it look like our calm, kneeling samurai is fashioned out of fire rather than graphite. As mark put it, “Simultaneously peaceful and ready for battle.”

The joystick just barely fits between the samurai and his blade.
Detail of shallow halftone raster engraving combined with deep vector engraving.

117: PC Case Engraving

To ring in the new year, and celebrate the ten year anniversary of my previous build, I decided to build a new PC. Back in 2007, it was two years before we even started playing with lasers. This time around, I knew for sure I’d be laser engraving some piece or another. I’ve engraved a few macbooks and other portable devices, and I’ve even engraved a custom wood faceplate for a friend’s ATX midtower. So I’ve been pretty excited about the idea of engraving something on my own machine!

Over a few weeks in January I did the research, collected the parts, and then planned a small “build party” with some of my local PC enthusiast friends so we could put the machine together together. Hey, it only happens once a decade or so, that’s a pretty good excuse for a shindig, yeah?

From left to right, Brenn, Jen (<3), myself, Maul, Ray, and Mark. Also not pictured: Maul’s bro Joe! Thanks for the photography, Mark!

Together we had dinner, built the PC, played some couch games, and mulled over a few remaining questions. What should this new build be called? What part of the case will be laser engraved? What are we going to engrave on it? I was so wishy-washy on the name decision that I couldn’t even settle on it before the party was over. Furthermore, I wanted the engraving design to be related to the name, so I couldn’t really come to any decisions on that front, either. But we were able to figure out what part to engrave, and as it turned out, the answer was nothing.

Fractal Design’s Define C case is sexy, but made out of questionably engravable plastic.

The Fractal Design Define C is a sexy, sexy midtower ATX case. I love the shroud, I love the quiet, and I love the flat textured front. I like simple, unassuming case designs, and I wanted to continue down that road after my last build in an Antec P180B. But when we finally dug into the case, I learned a few laser-unfriendly things I could probably have sussed out from reviews online if I had been more thorough.

The front of the case is not an anodized aluminum plate, and it’s also not easily detached from the surrounding plastic chassis that covers the front exhaust system. It’s made out of the same plastic—it’s very pretty, with a subtle vertical brushed texture, but it’s still just the case plastic. Because the textured surface isn’t repeated anywhere on the inside (or indeed on any other external surface) I wasn’t going to be able to do an inconspicuous engraving test. So I wouldn’t be able to engrave the front plate, but what about the window?

On a quest for extreme sound dampening, my previous PC build didn’t have a window at all. But over the years I’ve kind of missed being able to peek in on my parts, so this time I bought a case with built-in acrylic window.

With a power shroud for modesty and excellent cable arrangement, who wouldn’t want to peek inside?

Unfortunately, there wasn’t going to be an easy way to test that material inconspicuously either, and with the  engraving quality difference between cast and extruded acrylics, I didn’t want to gamble.

When I looked closer at the acrylic window, I noticed there was a lip on the inside, one that would fit a secondary piece of acrylic just fine as long as the measurements were correct. So I did a couple of sizing tests with some old pieces of acrylic, got my measurements spot on, and settled on a solution: cut a separate piece of cast acrylic and snap it into the existing acrylic window. I wouldn’t technically be engraving the PC case after all, but the finished piece would still look as good. As a bonus, I’d be able to easily change out the acrylic in the future if I wanted to change the design.

Amusingly enough, it was mulling around design ideas that led me to my final decision on the name of the machine. I’ve always been a fan of the Metroid series, you can see it in some of my other projects. Most game servers I host have names based on “Maru Mari”, and you’ll be connecting to “Varia” if you try to stream content to my television. I had a feeling I’d end up going with the Metroid theme again, but it wasn’t until I thought about how much fun it would be to engrave the cold steel corridors of Tourian into acrylic that I really landed on it.

The full map is too big; I’d have to fit it in this cyan rectangle

Tourian is a big map. Well, it’s not big, but its hallways are long and the vertical shafts are all a daunting climb. I’d have to compress the map pretty significantly to make it fit the relatively tiny space I had for my acrylic window. To make matters worse, halfway through the design I realized I had laid out the template wrong and was designing for the measurements in landscape instead of portrait. But after cutting a few rooms in half (and completely excising the hallway before Mother Brain’s chamber) I was able to make it fit.

The final compressed map, corrected to a portrait aspect.

I added a few additional details (the opening text scroll and an excessively big title in the original typeface in the corner) and the design was finished. I cleaned up the acrylic, seated it in the window’s lip, and used a tiny bit of clear packing tape on the inside corners to make sure it wouldn’t somehow come loose.

A mockup of what the case might look like with the final design.

The panel looks great when it’s not connected to the computer, but as it turns out, I should look into buying some motherboard-powered LED strip lighting to brighten up this design. Most of the photography here is cleaned up to make the engraving visible, but it’s much more subtle than that when properly installed on the PC.

This door is all that’s left of a completely deleted room. Don’t tell the purists!

The end result may be disappointingly dim, but I still had a blast manipulating the Tourian map in a way that wouldn’t compromise the basic layout, and I will definitely be using what I’ve learned on this project to make some more “window inserts” for this case in the future. Once it’s lit up, the design itself should really shine, but for now it still makes for some pretty fun close up photography!

The engraving fights with the inner bits just a little more than I’d hoped.
I love that the escape shaft coincidentally has its own murky yellow and green lighting.
This example clearly shows how dim the engraving is compared to the LED-lit components inside.
A two character 8 segment LED readout hides in Tourian’s O.
One Metroid, permanently frozen.

116: Laser Foil

Years ago, I purchased a roll of a foil material when I was first getting creative with the laser. I didn’t really know how it worked, and most instructions required a process I was wholly uncomfortable with: touching the material in-between passes. Most of my experiences touching anything between engraving and cutting meant engravings that fell out of alignment, so my poor roll of black laser foil was left mostly unused for several years.

The metallic foil shines bright red from most angles.

This year, for a New Years Party happening in just a few days, we were asked to design name badges for the attendees. For part of the design, Jen and I wanted to use a thin sticker on top the base badge acrylic, but since our normal supply of paper-thin acrylic didn’t come in red, we had to find alternatives. At some point I was reminded of the laser foil, so I ran a quick test with the black roll I’ve had on hand and quickly realized that would be the way to go.

Laser foil in rolls; one black roll from years ago and the red roll bought for this project.

The foil would have to be red, though, because of the design chosen. The badge design for this event features two small dogs sipping their drinks (art by!) next to a large dumpster fire—complete with a burning “2016” sign inside—the symbolism of which I’ll leave to you to interpret. That fire wouldn’t really stand out if it was just engraved onto the same smooth silver surface the badge is made from, so red foil it would be!

There are a few different ways to use laser foil effectively, but the way I settled on is described below, and it requires a few different steps that have to be done in order.

Black fills are raster engravings, blue and red are vector cuts of varying depths.

Make sure you only run your raster engraving first—the black and grey fills will convert to halftone and result in the surface engraving seen in the photography, while (in this configuration) the blue and red lines are score and cut respectively and will be done next.

Engraving done, now to carefully apply the foil.

With raster engraving done, very carefully apply a portion of laser foil to the surface, overlapping where your blue and red lines will do the dirty work. Since the fire design element is completely enclosed, you don’t have to worry about aligning the foil too much. Just make absolutely certain you do not nudge the material out of alignment during this step. I use an old iron bookbinding bar to keep my material in place.

The foil is applied; it doesn’t need to be perfectly aligned.

Set your software up to cut the blue lines next, and then the red lines after. You don’t need to stop the process in-between unless you want to turn on air assist for the cutting portion. Once all three processing steps are completed, you’ll have a finished badge with a bunch of extra foil on it.

Peeling foil back isn’t as troublesome as peeling vinyl; not nearly as stretchy!

Carefully remove the foil. It’s not as bad as weeding vinyl, thankfully, as the foil doesn’t easily get bent out of shape. Once you’re done, a light cleaning with some denatured or isopropyl alcohol and the badge is done!

From certain angles the reflection looks even more firey.

Because of its reflective nature, the foil fire will catch reflections and create a high contrast black and red look, while the smooth silver below will be bright in low light and aid in badge visibility. I did consider for a brief time going with a classic “dumpster green”, but the back color (white) didn’t work with the design well and, frankly, the results were too ugly to even consider photographing.

Happy new year!

115: Rounded Edges

One of the first limitations of laser engraving I learned about was the right angle. On most (if not all? let me know!) laser engravers, the laser can only fire in one direction: straight down, perpendicular to the surface plane. This means that you can’t easily get beveled edges, rounded corners, or other nice depth effects you can get using a rotary engraving system like a CNC mill.

There are ways around this limitation, of course: a patron I spoke to at the Aurora Public Library‘s Makerspace suggested rigging smaller pieces of material at their own angles, allowing the laser to fire directly down at a skewed surface, creating the angled edge desired. I considered this process, but it only works if you are cutting a single straight line—any shift in the direction will pull the head out of focus with the section of material you’re cutting.

Focus matters, though, as I found out several months ago while cutting some badges for an event. I accidentally left the laser bed way out of focus when cutting one of these badges, and you can see how the laser didn’t cut through, and instead just created a rounded channel in the surface of the material, in the shape of the badge I’d intended to cut. It made me realize I could cut a shape normally, and then cut it again out of focus, to give the edge a soft curve.

The mistake that taught me how to round corners via unfocused engraving.
The mistake that taught me how to round corners via unfocused engraving.

So this month, I got around to testing that some more! I opted for some snowflake designs (sourced from; thank you!) to give me plenty of edges to smooth and for general holiday goodness. The first step is to cut the piece normally, which results in the traditional sharp 90 degree edges you see in most lasered pieces.

Sharp 90 degree edges, standard for laser cutting.
Sharp 90 degree edges, standard for laser cutting.

Leave the leftover material in the laser bed, and do your absolute best not to disrupt its place. In fact, I suggest not touching the piece at all at this point and just telling the laser to fire again with new settings. Specifically, I threw the laser out of focus by telling it I was engraving on a 1.125″ thick material rather than a .125″ thick material. I’ve experimented with different unfocused settings, and can probably dial that in a little better, but 1″ is a nice easy number to get a decently rounded corner on a 2″ lens. I also sped up the laser a little bit because I didn’t want to overpower the edges when rounding them (while my speed settings won’t match yours exactly for a multitude of reasons, I cut the snowflake at 5.5% speed and then rounded the edges at 15% speed.)

The top side is now rounded; it's an imperfect process and looks a little rough up close.
The top side is now rounded; it’s an imperfect process and looks a little rough up close.

Since the rounding only happens on one side, you’ll have to flip the piece and round the edges again if you want to give both surfaces the same treatment. This is only possible if your piece has an axis of symmetry, and this is where you have to be very careful not to move your temporary jig. Once you’re done, you might have to clean the piece as firing a laser out of focus can produce a fair bit more detritus than firing it in focus.

Make sure to clean your honeycomb first, and wipe down any residue between each step. Oh, and use a clean cloth! Trust me!
Make sure to clean your honeycomb first, and wipe down any residue between each step. Oh, and use a clean cloth! Trust me!

As it turns out, even if you don’t move the makeshift jig at all, your second pass might be slightly out of alignment to the first. Why is this? Kerf—the width of the laser—means that your freshly cut snowflake might shift a fraction of a millimeter inside the jig. There’s a tiny, tiny little bit of give and it can sometimes be enough that the alignment is visually off. You can solve this by rounding one side before cutting, but you’ll still have to contend with this on the back half, and kerf didn’t affect my alignment nearly as much as another issue:

Much more alarmingly, I discovered while doing this project that pulling my laser out of focus by about an inch noticeably moves the laser’s aim. It’s not enough to ruin the project, but it is enough that I had to correct for it after several prototypes to get a nice even rounding. This aim issue as the laser focus changes is due to incorrectly calibrated mirrors somewhere along the laser’s path (totally my fault, as I foolishly adjusted them once upon a time and have been tweaking them here and there ever since) so if your mirrors are factory aligned like they should be you shouldn’t run into this issue.

Even if you don't move the piece at all between steps, kerf or poorly calibrated mirrors might cause your rounded edges to be misaligned.
Even if you don’t move the piece at all between steps, kerf or poorly calibrated mirrors might cause your rounded edges to be misaligned.

In the end, the rounded edges are a little rough looking, but if you get your settings dialed in (or would it be dialed out in this case?) you can get a nice smoothed edge that will catch light in a novel way for a laser cut item. I used opaque and translucent acrylic for this project, but I know this effect would look great in transparent and fluorescent acrylic as well. I can’t imagine it working as well with natural materials or microsurfaced plastic, but maybe I should experiment with that in the future!

If you have any unfocused laser tricks, or tips for keeping materials clean while processing pieces in multiple steps, let us know in the comments below! Happy holidays!