112: Three-Ply Acrylic

It’s kind of amazing that it’s taken me this long to get to this project; when 52 Lasers was first conceived, using three-ply acrylic was on the first draft of our potential projects list. Now, more than two and a half years later, I finally have a project that requires this unique material!

Rowmark's convenient visual representation.
Rowmark’s convenient visual representation.

Three-ply acrylic is similar to the two-ply acrylic I use very often, except the thin cap layer is applied to both sides of the main acrylic substrate. While most of the badges, magnets, and other pieces I make only need one side to be engraved, certain items like medallions or coins might need both sides engraved, and this is when you’d use a three-ply option. This month’s project is a great example.

 

A bunch of SCA tokens celebrating an elevation.
A bunch of SCA tokens celebrating an elevation.

A couple of dear friends of ours are part of a group called the Society for Creative Anachronism. While I’d like to explain what that is for you, I couldn’t possibly do better than the SCA’s excellent portal for curious newcomers. Dave got in touch and explained that his husband Jim was going to be recognized for his accomplishments in the Society, in a ceremony called an elevation. For the event, they wanted to distribute small tokens, in SCA appropriate colors, featuring Jim’s moniker in Chinese (凱曾, Kai Tseng) and the triple rapier logo of the Order of the Masters of Defense. I’ve always used wood for tokens that need both sides engraved up to this point, but it was far easier to get the colors Dave and Jim wanted by using the three-ply LaserMax acrylic from Rowmark.

When you’re engraving two-ply material, you don’t really have to worry too much about the back face; people aren’t going to be scrutinizing a blank back surface, so imperfections caused by the manufacturing process aren’t a big deal. That’s why two-ply materials only ship with mask on the front surface. Three-ply material has mask on both cap layers, and while you want to remove the mask from the side you’re engraving first, you definitely want to leave the mask on the bottom side. That’s because those vector cutting scars—plastic residue, honeycomb table impressions—are going to damage that side if you don’t. It’s okay to engrave the reverse side with the original side unmasked because you won’t be doing any high power vector cutting in that final step; it’s just surface engraving, which doesn’t cause those kinds of issues.

Red tokens placed upside down in the makeshift jig.
Red tokens placed upside down in the makeshift jig.

Conveniently enough, just cutting the shapes out in the first pass automatically creates a makeshift jig—or template—out of the leftover material. As long as you send the second half of the engraving data in the same exact positions as the first, all you have to do is flip the shape over and engrave again. Now, this requires a symmetrical shape, or else you’ll have to take flipping into consideration and cut extra pieces out of the material that will form the jig. You also want to remember to take the mask off of the flipped token’s new front side before engraving; firing the laser through that thin plastic layer will usually create a sticky mess.

With all of that in mind, it’s fairly simple to process three-ply material in a clean manner. You’ll still have to wipe down the edges with a light alcohol or a solvent similar to Goo Gone, but that’s usually the case with two-or-more-ply acrylics anyway. For how simple the whole process is, I still managed to muck things up, and I lost a whole set of twenty yellow tokens on the first pass due to a technical issue with the laser that I still haven’t figured out.

Unexpected markings ruined a whole batch of tokens.
Unexpected markings ruined a whole batch of tokens.

Once in a while, when raster engraving, the field I’m engraving will be speckled with tiny additional engraved dots. I can never predict when it happens, and just rebooting the system fixes it, but it always loses me a piece or two.

Token stacks.
Token stacks.

I also noticed with this project that my laser alignment isn’t perfectly perpendicular to the engraving surface currently; if you look a the picture of the token stacks above, you’ll notice the slight skew in the 1/8″ thickness of the tokens. I think this is due to a misaligned mirror #3, but it’s difficult to know for sure and I might end up having to replace the mirror #3 assembly with a factory-calibrated one.

If any of you have any tips for cleaning the laser-cut edges of a two-or-three-ply piece, any ideas on what might cause the rare engraving field speckling, or any suggestions on how to realign the beam path across the surface, let me know in the comments below!

111: Bottlecap Sign

The full bottle cap holder. Read on to find out how it was made!
The full bottle cap holder. Read on to find out how it was made!

It wasn’t all that long ago that the craft beer explosion happened, but it’s hard to think back to when beer—at least in my life—was a choice between Budweiser and Miller products. While I’m sure there’s debate aplenty about the community that formed around craft beer, you can’t dismiss all of the awesome artwork that community has produced. One of the best design ideas I’ve seen spreading around the Internet has been beer cap holders. They come in many sizes and shapes—usually states and countries—and are an artistic way to keep track of which craft breweries you’ve sampled fizzy drinks from.

The fact that most of these holders were laser cut was only part of the reason for my interest; many of the examples I saw had different amounts of studs to grip the bottle caps, and I wondered which one was the best solution. Sure, I could’ve done the research and stopped there, but that’s not nearly as much fun. A bottle cap holder I would make!

A stack of prototypes, some with six studs and some frightfully too small.
A stack of prototypes, some with six studs and some frightfully too small.

In my research, I learned that most pop caps (and the twist caps based on their design) have 21 teeth. Despite this, my first few prototypes had six studs. Once I realized they didn’t fit very well on the teeth of the caps I redesigned to include seven evenly distributed studs. I also experimented with stud design, settling on trapezoids after rectangles were too tight and triangles were just a little too loose. This mission to match the studs with the cap teeth would eventually cause me an issue: Goose Island’s caps have 27 teeth! Every other cap I had was only 21. While some size variance made some caps tighter and some caps looser, only Goose Island had to sit this one out. I hate geese anyway.

Bottle caps have feelings too. Look at how well the studs fit between the teeth!
Bottle caps have feelings too. Look at how well the studs fit between the teeth!

Once I had a single cap holder squared away, I spent an unreasonable amount of time trying to fit a grid of them into the word “beer”. I agonized over spacing, wanting to stick to some kind of grid without ending up with awkward, noticeable gaps. It wasn’t long before I realized I’d have to design my own letters based off of the grid rather than relying on otherwise well-made typefaces.

The initial design, with three caps per stroke. Way too big!
The initial design, with three caps per stroke. Way too big!
Another attempt, at a slightly more manageable size.
Another attempt, at a slightly more manageable size.
The final layout (apologies for how difficult it is to see!)
The final layout (apologies for how difficult it is to see!)

After a few attempts at grid-based letters that turned out far too large for the scope of this project, I ironically ended up back at a typeface: one I designed years ago based off of the bitmap version of Chicago present in Final Fantasy VI. Why not add a geeky touch? It also very easily solved the issue of making the letters fit on a grid due to its low resolution pixel quality.

Mounting holes and box joints.
Mounting holes and box joints.

Once I had the design complete, I whipped up a quick (and honestly lazy) box joint connection to hold two pieces together; the sign was very nearly three feet long and I couldn’t cut it out of one piece of oak ply. In hindsight, I should have engraved the sections of wood that held together each letter; they’re just a little too noticeable and wouldn’t be if darkened. I also inserted some small holes for screws that will eventually hold this a small distance from whatever wall it ends up on. A light sanding later and the finished piece was ready for caps!

Goose Island just had to have 27 teeth. Figures. Geese.
Goose Island just had to have 27 teeth. Figures. Geese.

…As it turns out, I don’t have many caps. I’ll fix that!

 

110: Resin Topped Stud Earrings

DSC00962I’ve been wanting to experiment with resin for years!  I just never got around to it – in all honestly, I read so many horror stories, I was a little timid.  So let me tell you – just do it.  It’s not hard, the mess can be contained, and the results are worth it!

My love of paper almost rivals my love of lasers.  I’ve shied away from combining the two for my jewelry line at Isette because paper is fragile and prone to wear and dirt.  Resin is perfect to protect the paper, and even adds another dimension to it thanks to the doming property.

Here’s my step but step guide to resin topped laser cut stud earrings – I’m a complete resin newbie, but I love the results!

Variety of papers
Variety of papers
Glue prep - coat with paste, and let it get tacky!
Glue prep – coat with paste, and let it get tacky!
Blanks ready to be made into studs!
Blanks ready to be made into studs!

Step 1: Glue the paper to the wood.  I laser cut some thin bamboo blanks and rough cut some fun paper I had in my stash – a page from an old dictionary, regular gray scrapbook paper, and some beautiful handmade Japanese paper.  I used professional quality PVA glue, which is acid free and long lasting.  One of the tricks I learned from years of bookbinding – put a coating of glue on both sides of the piece you are gluing together.  Let them get a little tacky, and then adhere them together.  The bond is stronger, and paper is much less wrinkly and easier to work with when glued this way.  I let them dry together overnight.

Step 2: Laser cut your shapes from the papered wood. I love making stud earrings, so this is what I designed first.  Simple shapes – drops, dots and hearts.  I sized them a bit larger than my usual stud earrings, so they would be easier to work with if I had to handle them a lot when applying resin.  It also allowed more real estate for the patterns to shine through.

Freshly cut!
Freshly cut!

I also whipped up some simple bar shaped pendants, and pre-cut some holes to put jump rings through.

Step 3: Set up your work area.  Resin can be a little messy and drippy – it’s best to be prepared.  Cover your surfaces.  The internet suggested using silicone mats, which are nice an flexible and the resin pops off of when dry.  I used my earring gluing board – not flexible at all, and I kind of regretted it.  There is a piece that is likely permanently stuck on now.

MDF glue board, with the Perler bead board on top.
MDF glue board, with the Perler bead board on top.

I went out an purchased some Perler Bead boards to use as doming board.  Doming boards are useful for thin items you with to top with resin.  Like water, resin has a surface tension which makes a nice dome on the end project.  If you get a little heavy handed with the resin, it’s very easy to spill over the edge.  If it’s on a flat surface, the spill over pulls a lot of the resin over the edge with it and stays attached to the piece.  If your piece is on a doming board, the resin drops away, preserving the surface tension on the top of the laser cut piece.

All laid out on the perler bead board.
All laid out on the first Perler bead board.

I donned by respirator, as the resin can be strong smelling and I was working with tiny pieces, and gloves are good to limit your exposure (nitrile, not latex).  Resin Obsession Website has a full list of safety tips.

Unmixed resin!
Unmixed resin.
Unfinished studs, with 4 drams of unusable resin. It was like spreading taffy at the end!
Unfinished studs, with 4 drams of unusable resin. It was like spreading taffy at the end!

Step 4: Mix up your resin.  Resin is generally sold as a two part system,  so you are sold a bottle of resin and a bottle of hardener.   I used Doming Resin from Rio Grande which called for equal amounts of each.  I didn’t know how far resin would go, so I mixed up a 6 dram batch (3 drams of resin, 3 drams of hardener).  Of this, I probably used 2, and the rest hardened before I could finish all my pieces anyway.  So, smaller batches are key!

Resin experts recommend stirring the two together slowly, as to not create excess air bubbles which might affect the quality of the resin later.  As I mixed, the resin became cloudy, then cleared up.

Step 5: Pour!  Or in my case, drip and dab is more appropriate, but it doesn’t sound as action-y.  I used toothpicks to get a large drop to put on the stud earrings.  This dome resin was more viscous than I expected, kind of like “soft ball stage” consistency, if you make candy. So it stayed balled and so I started messing with it right away trying to spread the resin to the edges to with my toothpick.  It was messy, and not at all the right technique.

Resin drops spreading as I try to be patient.
Resin drops spreading as I try to be patient.
Patience only lasts so long. Helping the resin to the edge!
Patience only lasts so long. Helping the resin to the edge!

A better way is to hurry up and wait.  Weird but true.  I had a much better time with the resin when I dropped resin on a series of studs, then waited a bit to let the resin spread out on it’s own, maybe a minute or so.  By the time I was done dolloping resin on the last piece, the first one was ready to spread.  The resin settled naturally out – not enough to cover the whole piece, but pretty close.  I could easily “walk” the resin to the edge and the dome evened out accordingly.  (By “walk”, I mean I dragged the toothpick, upright, to the edge, creating a path.  Don’t use the toothpick like a spatula – it just sticks in the resin and disrupts the dome.)  The circles had better natural coverage than the other shapes.  For hearts, I learned it was better to put two smaller drips in the loves of the heart, and then walk the resin down to the point.  With a single big drip it was more likely to just flow off the “v” of the heart.

Too much resin!
Too much resin!
You can see the difference between the resin topped and the "raw" paper pieces. If I would have sealed the paper, it wouldn't have changed color as much.
You can see the difference between the resin topped and the “raw” paper pieces. If I would have sealed the paper, it wouldn’t have changed color as much.

Lesson learned: The scrapbook paper and the dictionary pages changed color pretty significantly – I should have sealed them first to create a barrier and keep them from getting soaked.  The high quality Japanese paper fared brilliantly.

Step 6: Wait.  When your pieces are covered as you desire, stop messing with them.  It’s time for them to cure overnight.  Get a lid that you can put over the wet resin to keep dust of them and marring your hard work.  Make sure it isn’t touching your resin, of course!  Go to bed and dream about how delightfully shiny your jewels will be.

Step 7: Admire and Finish.

The studs *barely* fit on the posts of the doming board. It was a delicate balancing act to get them to stay on the board flat and spread the resin around.
The studs *barely* fit on the posts of the doming board. It was a delicate balancing act to get them to stay on the board flat and spread the resin around.

Admiring your handiwork is a very important step in the process – the resin will look really cool!  Clean up any resin than may have dripped over and stuck to the back and sides – I had quite a bit.  I got better about dripping on the right amount by the end, so I’ll chalk that up to learning curve.  I basically peeled it off with a pair of curved nosed pliers and my thumbnail.  Quick and dirty, but it got the clean up job done.  Attach any stud backs you desire!

Resin overflow.
Resin overflow, from the underside.

In the case of the pendants, drill out the resin filled holes.  I need to try the pendants again without the pre-cut holes – It might just be easier to drill since I have to drill out the resin anyway.  And it would save me a resin spill underneath.

Pretty and perfect on my brand new post earring cards! Also laser cut, or course.
Pretty and perfect on my brand new post earring cards! Also laser cut, or course.

I love how they turned out, and I’m looking forward to combining lasers and resin in other ways!  If you give resin coating a try, let me know how it turns out for you!

PS – what do you think of the new jewelry cards?  This post is the debut of the new design 🙂

 

109: Edge-Lit Acrylic

I’ve been playing a lot lately with a new toy I picked up from Inventables: a powered LED strip for edge lighting acrylic. It’s made in particular to work in tandem with specially made acrylics that transmit light efficiently, but I’ve found it works really well with simpler transparent and fluorescent acrylics.

The first dual-layer design.
The first dual-layer design.

My first test was with transparent orange material sourced at the Aurora Public Library’s Makerspace—check it out if you’re local!—and it seemed appropriate to design a little sign for the space as the test. Because the LED strip is designed to snap to the edge of a 1/4″ piece of acrylic and I only had 1/8″ material available, I decided to split the design across two layers of acrylic. The front layer included all of the vector engraving and the back layer was just the main title text filled. The resulting look is striking, but using two transparent layers means you have to be extra careful not to let any fingerprints or dust get in between.

The short sign lit up easily.
The short sign lit up easily. Please ignore the Macbook!

Around the same time, I was working with a local artist to create some wall décor based on the classic Pac-Man maze. We agreed pretty quickly that the lit effect would look great and settled on some fluorescent blue acrylic. The first several tests confirmed that the two layer effect would be excellent; dividing the pellets, ghosts and other objects from the maze walls might not be very visible in the photography, but it’s a really neat trick when you’re examining the piece up close.

A small cross-section of the Pac-Man design in two layers.
A small cross-section of the Pac-Man design in two layers.

One concern I continue to have is whether a single LED strip will be able to illuminate the entire flourescent blue acrylic sheet—this piece is 16 inches tall, towering compared to the 4″ makerspace sign. A quick test on some scrap acrylic shows that the light visibly dims near the top, but I won’t be able to know for sure how the final piece will look until a last-minute shipment of materials arrives. Speaking of that, here’s a pro tip: don’t assume you’ve got all the materials you need until the day you’re scheduled to cut! Always check, even if it’s something you always keep in stock, like the black cast acrylic that was supposed to be the backing layer for the finished Pac-Man piece.

A later single layer test cut with rounded vector engraved maze walls.
A later single layer test cut with rounded vector engraved maze walls.

Edge lit acrylic is a great look, and I’m might have to investigate the “EndLighten” brand or similar substrates to maximize light transmission. I know I’m also going to be looking into portable equivalents; this hardware has to plug into a wall. I’m sure that’ll be a post in the future; until then, look forward to an update on this post with additional pictures of the finished Pac-Man piece!

This crazy square panorama shows how the lighting falls off near the top. We'll see how it looks in the finished piece!
This crazy square panorama shows how the lighting falls off near the top. We’ll see how it looks in the finished piece!

One laser, fifty-two weeks